parsiad.ca - An introduction to regular Markov chains









Search Preview

An introduction to regular Markov chains - Parsiad Azimzadeh

parsiad.ca

.ca > parsiad.ca

SEO audit: Content analysis

Language Error! No language localisation is found.
Title An introduction to regular Markov chains - Parsiad Azimzadeh
Text / HTML ratio 52 %
Frame Excellent! The website does not use iFrame solutions.
Flash Excellent! The website does not have any flash contents.
Keywords cloud Markov regular chains = matrix transition vector Optimal stopping GNU chain limiting distribution Parsiad positive University Azimzadeh state Octave publications
Keywords consistency
Keyword Content Title Description Headings
Markov 11
regular 7
chains 6
= 5
matrix 5
transition 4
Headings
H1 H2 H3 H4 H5 H6
1 6 3 0 0 0
Images We found 2 images on this web page.

SEO Keywords (Single)

Keyword Occurrence Density
Markov 11 0.55 %
regular 7 0.35 %
chains 6 0.30 %
= 5 0.25 %
matrix 5 0.25 %
transition 4 0.20 %
vector 4 0.20 %
Optimal 4 0.20 %
stopping 4 0.20 %
GNU 4 0.20 %
chain 4 0.20 %
limiting 3 0.15 %
distribution 3 0.15 %
Parsiad 3 0.15 %
positive 3 0.15 %
University 3 0.15 %
Azimzadeh 3 0.15 %
state 3 0.15 %
Octave 3 0.15 %
publications 3 0.15 %

SEO Keywords (Two Word)

Keyword Occurrence Density
regular Markov 6 0.30 %
Markov chains 6 0.30 %
Markov chain 4 0.20 %
Optimal stopping 4 0.20 %
transition matrix 3 0.15 %
has a 3 0.15 %
limiting distribution 3 0.15 %
GNU Octave 3 0.15 %
is the 3 0.15 %
Parsiad Azimzadeh 3 0.15 %
Selected publications 3 0.15 %
matrix T 2 0.10 %
Tm > 2 0.10 %
to be 2 0.10 %
it follows 2 0.10 %
steady state 2 0.10 %
in GNU 2 0.10 %
for some 2 0.10 %
= 1 2 0.10 %
we use 2 0.10 %

SEO Keywords (Three Word)

Keyword Occurrence Density Possible Spam
regular Markov chains 4 0.20 % No
GNU Octave financial 2 0.10 % No
An introduction to 2 0.10 % No
Markov chain with 2 0.10 % No
transition matrix T 2 0.10 % No
University of Waterloo 2 0.10 % No
the significance of 2 0.10 % No
to regular Markov 2 0.10 % No
introduction to regular 2 0.10 % No
regular Markov chain 2 0.10 % No
a dynamic programming 2 0.10 % No
Selected publications Blog 2 0.10 % No
arbitrary probability vector 1 0.05 % No
Now let p 1 0.05 % No
the ith standard 1 0.05 % No
is the ith 1 0.05 % No
e_i is the 1 0.05 % No
where e_i is 1 0.05 % No
Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right where e_i 1 0.05 % No
that Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right where 1 0.05 % No

SEO Keywords (Four Word)

Keyword Occurrence Density Possible Spam
to regular Markov chains 2 0.10 % No
introduction to regular Markov 2 0.10 % No
An introduction to regular 2 0.10 % No
Parsiad Azimzadeh Selected publications 1 0.05 % No
c_1\ldotsc_n Note that Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right 1 0.05 % No
for some constants c_1\ldotsc_n 1 0.05 % No
some constants c_1\ldotsc_n Note 1 0.05 % No
constants c_1\ldotsc_n Note that 1 0.05 % No
Note that Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right where 1 0.05 % No
write p=c_1v_1\cdotsc_nv_n for some 1 0.05 % No
that Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right where e_i 1 0.05 % No
Akp=VJkV1p=VJkV1\leftc_1v_1\cdotsc_nv_n\right=VJk\leftc_1e_1\cdotsc_ne_n\right where e_i is 1 0.05 % No
where e_i is the 1 0.05 % No
e_i is the ith 1 0.05 % No
is the ith standard 1 0.05 % No
the ith standard basis 1 0.05 % No
p=c_1v_1\cdotsc_nv_n for some constants 1 0.05 % No
We can write p=c_1v_1\cdotsc_nv_n 1 0.05 % No
can write p=c_1v_1\cdotsc_nv_n for 1 0.05 % No
standard basis vector Then 1 0.05 % No

Internal links in - parsiad.ca

Selected publications
Selected publications - Parsiad Azimzadeh
Blog
Parsiad Azimzadeh
read about the latest release here
GNU Octave financial 0.5.0 released - Parsiad Azimzadeh
Monte Carlo simulation framework
Monte Carlo simulations in GNU Octave financial package - Parsiad Azimzadeh
An introduction to regular Markov chains
An introduction to regular Markov chains - Parsiad Azimzadeh
mlinterp: Fast arbitrary dimension linear interpolation in C++
mlinterp: Fast arbitrary dimension linear interpolation in C++ - Parsiad Azimzadeh
Optimal stopping III: a comparison principle
Optimal stopping III: a comparison principle - Parsiad Azimzadeh
Optimal stopping II: a dynamic programming equation
Optimal stopping II: a dynamic programming equation - Parsiad Azimzadeh
Optimal stopping I: a dynamic programming principle
Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh
Introductory group theory
Introductory group theory - Parsiad Azimzadeh
Closed-form expressions for perpetual and finite-maturity American binary options
Closed-form expressions for perpetual and finite-maturity American binary options - Parsiad Azimzadeh
Fast Fourier Transform with examples in GNU Octave/MATLAB
Fast Fourier Transform with examples in GNU Octave/MATLAB - Parsiad Azimzadeh
Welcome
Welcome - Parsiad Azimzadeh
Markov chains (1)
Parsiad Azimzadeh
Optimal stopping (3)
Parsiad Azimzadeh
GNU Octave (2)
Parsiad Azimzadeh
Notes (2)
Parsiad Azimzadeh
Mathematical finance (1)
Parsiad Azimzadeh
RSS
Parsiad Azimzadeh

Parsiad.ca Spined HTML


An introduction to regular Markov villenage - Parsiad Azimzadeh Parsiad Azimzadeh Selected publications Blog Menu Curriculum vitae Selected publications Blog Log in An introduction to regular Markov villenage January 21, 2018 Parsiad Azimzadeh In this expository post (for the MATH 525 undertow at Michigan), I will discuss the significance of regular Markov chains. In short, regular Markov villenage turn out to be very well-behaved: a regular Markov uniting has a unique steady state which is moreover its limiting distribution. For matrices $A = (a_{ij})$ and $B = (b_{ij})$, we use $A \leq B$ to midpoint that $a_{ij} \leq b_{ij}$ for all indices $(i,j)$. $\lt$, $\gt$, and $\geq$ are specified similarly. Consider a Markov uniting with transition matrix $T$. We say the Markov uniting is regular if $T^m > 0$ for some positive integer $m$. In this article, we use the institute that transition matrices $T$ are right stochastic (i.e., $\sum_j T_{ij} = 1$). We are now ready to state the main result regarding the significance of regularity. A regular Markov uniting with an $n\times n$ transition matrix $T$ has a limiting distribution $\pi=(\pi_{1},\ldots,\pi_{n})$. Moreover, this limiting distribution is the Markov chain's only steady state (i.e., it is the only solution $x$ of $xT=x$). Since $T$ is an sooner positive matrix (i.e., $T^m > 0$), by the Perron-Frobenius theorem, it has a simple eigenvalue $r = \rho(T)$ (see, e.g., Remark 4.2 of Zaslavsky, Boris G., and Bit-Shun Tam. "On the Jordan form of an irreducible matrix with sooner nonnegative powers." Linear Algebra and its Applications 302 (1999): 303-330). Moreover, since $T$ is a transition matrix, $\rho(T) = 1$. The remainder of the proof proceeds by power iteration, which we explain in detail for exposition's sake. Now, let $A=(a_{ij})$ be the transpose of $T$, which we decompose into its Jordan canonical form $A=VJV^{-1}$. Denoting by $v_{1},\ldots,v_{n}$ the columns of $V$, we segregate $v_{1}$ to be the (positive) eigenvector of $A$ respective to the eigenvalue $1$. Now, let $p$ be an wrong-headed probability vector. We can write $p=c_{1}v_{1}+\cdots+c_{n}v_{n}$ for some constants $c_{1},\ldots,c_{n}$. Note that $$ A^{k}p=VJ^{k}V^{-1}p=VJ^{k}V^{-1}\left(c_{1}v_{1}+\cdots+c_{n}v_{n}\right)=VJ^{k}\left(c_{1}e_{1}+\cdots+c_{n}e_{n}\right) $$ where $e_{i}$ is the $i$-th standard understructure vector. Then $$ A^{k}p=c_{1}v_{1}+VJ^{k}\left(c_{2}e_{2}+\cdots+c_{n}e_{n}\right). $$ Since $$ J^{k}\rightarrow\begin{pmatrix}1\\ & 0\\ & & \ddots\\ & & & 0 \end{pmatrix} $$ as $k\rightarrow\infty$, it follows that $A^{k}p\rightarrow c_{1}v_{1}$. Since $$ e^{\intercal}(Ax)=\sum_{i}\sum_{j}a_{ij}x_{j}=\sum_{j}x_{j}\sum_{i}a_{ij}=\sum_{j}x_{j}=e^{\intercal}x $$ for any vector $x$, it follows by continuity that $$ 1=e^{\intercal}p=e^{\intercal}(Ap)=e^{\intercal}(A^{2}p)=\cdots=e^{\intercal}(A^{k}p)\rightarrow e^{\intercal}(c_{1}v_{1}). $$ Therefore, $\pi=c_{1}v_{1}^{\intercal}$ is a probability vector, and we have arrived at the desired result. Markov villenage Parsiad Azimzadeh AboutPhD (University of Waterloo), MMath (University of Waterloo), BSc (Simon Fraser University)Latest postsAn introduction to regular Markov chainsmlinterp: Fast wrong-headed dimension linear interpolation in C++Optimal stopping III: a comparison principleOptimal stopping II: a dynamic programming equationOptimal stopping I: a dynamic programming principleGNU Octave financial 0.5.0 releasedMonte Carlo simulations in GNU Octave financial packageIntroductory group theoryClosed-form expressions for perpetual and finite-maturity American binary optionsFast Fourier Transform with examples in GNU Octave/MATLABPagesHomeSelected publicationsWelcomeTagsMarkov villenage (1)Optimal stopping (3)GNU Octave (2)Notes (2)Mathematical finance (1) RSS | Design: HTML5 UP Please enable JavaScript to view the comments powered by Disqus.