parsiad.ca - Mathematical finance (1)









Search Preview

Parsiad Azimzadeh

parsiad.ca

.ca > parsiad.ca

SEO audit: Content analysis

Language Error! No language localisation is found.
Title Parsiad Azimzadeh
Text / HTML ratio 61 %
Frame Excellent! The website does not use iFrame solutions.
Flash Excellent! The website does not have any flash contents.
Keywords cloud binary option = American resp call put perpetual < options price expressions cashornothing strike motion Brownian case time real GNU
Keywords consistency
Keyword Content Title Description Headings
binary 18
option 14
= 14
American 14
resp 12
call 9
Headings
H1 H2 H3 H4 H5 H6
1 6 7 0 0 0
Images We found 3 images on this web page.

SEO Keywords (Single)

Keyword Occurrence Density
binary 18 0.90 %
option 14 0.70 %
= 14 0.70 %
American 14 0.70 %
resp 12 0.60 %
call 9 0.45 %
put 9 0.45 %
perpetual 8 0.40 %
< 8 0.40 %
options 8 0.40 %
price 8 0.40 %
expressions 8 0.40 %
cashornothing 7 0.35 %
strike 6 0.30 %
motion 6 0.30 %
Brownian 6 0.30 %
case 6 0.30 %
time 6 0.30 %
real 5 0.25 %
GNU 5 0.25 %

SEO Keywords (Two Word)

Keyword Occurrence Density
American binary 11 0.55 %
of the 11 0.55 %
Brownian motion 6 0.30 %
binary put 6 0.30 %
it is 6 0.30 %
price of 6 0.30 %
resp call 5 0.25 %
resp K 5 0.25 %
binary option 5 0.25 %
K < 5 0.25 %
< x 5 0.25 %
put resp 5 0.25 %
expressions for 5 0.25 %
with strike 4 0.20 %
of a 4 0.20 %
for the 4 0.20 %
Optimal stopping 4 0.20 %
K > 4 0.20 %
the option 4 0.20 %
perpetual American 4 0.20 %

SEO Keywords (Three Word)

Keyword Occurrence Density Possible Spam
put resp call 5 0.25 % No
American binary put 5 0.25 % No
K < x 5 0.25 % No
x resp K 4 0.20 % No
resp K > 4 0.20 % No
K > x 4 0.20 % No
< x resp 4 0.20 % No
binary put resp 4 0.20 % No
perpetual and finitematurity 4 0.20 % No
distribution of the 3 0.15 % No
the conditional first 3 0.15 % No
of the conditional 3 0.15 % No
Laplace transform of 3 0.15 % No
the distribution of 3 0.15 % No
transform of the 3 0.15 % No
first passage time 3 0.15 % No
the Laplace transform 3 0.15 % No
follow immediately from 3 0.15 % No
the case of 3 0.15 % No
an American binary 3 0.15 % No

SEO Keywords (Four Word)

Keyword Occurrence Density Possible Spam
American binary put resp 4 0.20 % No
K < x resp 4 0.20 % No
< x resp K 4 0.20 % No
x resp K > 4 0.20 % No
resp K > x 4 0.20 % No
binary put resp call 4 0.20 % No
motion to a particular 3 0.15 % No
an American binary put 3 0.15 % No
resp call with strike 3 0.15 % No
transform of the distribution 3 0.15 % No
with strike K < 3 0.15 % No
strike K < x 3 0.15 % No
to a particular level 3 0.15 % No
call with strike K 3 0.15 % No
Brownian motion to a 3 0.15 % No
of Brownian motion to 3 0.15 % No
time of Brownian motion 3 0.15 % No
first passage time of 3 0.15 % No
conditional first passage time 3 0.15 % No
the conditional first passage 3 0.15 % No

Internal links in - parsiad.ca

Selected publications
Selected publications - Parsiad Azimzadeh
Blog
Parsiad Azimzadeh
read about the latest release here
GNU Octave financial 0.5.0 released - Parsiad Azimzadeh
Monte Carlo simulation framework
Monte Carlo simulations in GNU Octave financial package - Parsiad Azimzadeh
An introduction to regular Markov chains
An introduction to regular Markov chains - Parsiad Azimzadeh
mlinterp: Fast arbitrary dimension linear interpolation in C++
mlinterp: Fast arbitrary dimension linear interpolation in C++ - Parsiad Azimzadeh
Optimal stopping III: a comparison principle
Optimal stopping III: a comparison principle - Parsiad Azimzadeh
Optimal stopping II: a dynamic programming equation
Optimal stopping II: a dynamic programming equation - Parsiad Azimzadeh
Optimal stopping I: a dynamic programming principle
Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh
Introductory group theory
Introductory group theory - Parsiad Azimzadeh
Closed-form expressions for perpetual and finite-maturity American binary options
Closed-form expressions for perpetual and finite-maturity American binary options - Parsiad Azimzadeh
Fast Fourier Transform with examples in GNU Octave/MATLAB
Fast Fourier Transform with examples in GNU Octave/MATLAB - Parsiad Azimzadeh
Welcome
Welcome - Parsiad Azimzadeh
Markov chains (1)
Parsiad Azimzadeh
Optimal stopping (3)
Parsiad Azimzadeh
GNU Octave (2)
Parsiad Azimzadeh
Notes (2)
Parsiad Azimzadeh
Mathematical finance (1)
Parsiad Azimzadeh
RSS
Parsiad Azimzadeh

Parsiad.ca Spined HTML


Parsiad Azimzadeh Parsiad Azimzadeh Selected publications Blog Menu Curriculum vitae Selected publications Blog Log in Closed-form expressions for perpetual and finite-maturity American binary options March 1, 2015 Parsiad Azimzadeh Introduction In this post, the reader is shown how to derive closed-form expressions for perpetual and finite-maturity American binary (a.k.a. digital) options written on a stock pursuit geometric Brownian motion. These expressions are closed-form in that they consist of a finite number of arithmetic operations and well-known functions (e.g. $\operatorname{erf}$). These follow immediately from expressions for the Laplace transform of the distribution of the provisionary first passage time of Brownian motion to a particular level; derived herein. A binary option is a type of option in which the payoff can take only two possible outcomes, either some stock-still monetary value of some windfall or nothing at all. The two main types of binary options are the cash-or-nothing binary option and the asset-or-nothing binary option. The cash-or-nothing binary option pays some stock-still value of mazuma if the option expires in-the-money while the asset-or-nothing pays the value of the underlying security. They are moreover tabbed all-or-nothing options, digital options (more worldwide in forex/interest rate markets), and stock-still return options (FROs) (on the American Stock Exchange). A European option may be exercised only at the expiration stage of the option (i.e. at a single pre-defined point in time). An American option, on the other hand, may be exercised at any time surpassing the expiration date. For an American binary put (resp. call), it is sufficient to consider the cash-or-nothing specimen with an option paying off a single unit in the numéraire. The asset-or-nothing specimen is a simple scaling (by the strike price) of the cash-or-nothing case. Option prices Closed-form expressions for the prices of American binary options written on an windfall pursuit geometric Brownian motion as per $$S_t=x\exp\left(\left(r-\delta-\frac{1}{2}\sigma^{2}\right)t+\sigma W_{t}\right)$$ are presented in this section. Both the *perpetual* and *finite-maturity* cases are considered. It is unsupportable that $r$ is real, $\delta\geq0$, and $\sigma>0$. $K>0$ is used to denote the strike price of an option. It will be helpful to pinpoint the pursuit symbols: (it is readily verified that $\xi^{2}+2r\geq0$; i.e. $b$ is real) $$a=\frac{1}{\sigma}\log\frac{K}{x},\text{ }\xi=\frac{r-\delta}{\sigma}-\frac{\sigma}{2},\text{ and }b=\sqrt{\xi^{2}+2r}.$$ Because a binary option is exercised as soon as it is in the money, it is unsupportable $K < x$ (resp. $K > x$) for a put (resp. call). Otherwise, the option is exercised upon inception and worth exactly one unit. The expressions are summarized below: The price of a cash-or-nothing American binary put (resp. call) with strike $K < x$ (resp. $K > x$) and time-to-expiry $T$ is $$\frac{1}{2}e^{a\left(\xi-b\right)}\left\{ 1+\text{sgn}\left(a\right)\text{erf}\left(\frac{bT-a}{\sqrt{2T}}\right)+e^{2ab}\left[1-\text{sgn}\left(a\right)\text{erf}\left(\frac{bT+a}{\sqrt{2T}}\right)\right]\right\}.$$ The price of a cash-or-nothing, perpetual American binary put (resp. call) with strike $K < x$ (resp. $K > x$) is $e^{a\xi-\left|a\right|b}$. These expressions follow immediately from the Laplace transform of the distribution of the provisionary first passage time of Brownian motion to a particular level (see below). For the specimen of an (ordinary) perpetual American call, when the interest rate is nonnegative (more generally, $2r\geq-\sigma^{2}$) and the dividend rate is zero, it is never optimal to exercise and the option is worth the initial stock price. A respective result for the perpetual American binary undeniability is as follows: When $2r\geq-\sigma^{2}$ (resp. $2r\leq-\sigma^{2}$) and $\delta=0$, the price of a cash-or-nothing, perpetual American binary undeniability (resp. put) with strike $K>x$ (resp. $K < x$) is $x/K$. It is sufficient to consider the specimen of the call; the put is handled similarly. Since $a>0$, $$e^{a\xi-\left|a\right|b}=e^{a\left(\xi-b\right)}=e^{-a\sigma}=x/K.$$ Below, we graph the value of an American binary put with $K = 100$, $r = 0.04$, $σ = 0.2$, and $T = 1$. GNU Octave/MATLAB lawmaking to generate a graph similar to the whilom is given below. K = 100.; x = K:1:K*2; r = 0.04; sigma = 0.2; delta = 0.01; T = 1.; a = 1. / sigma * log (K ./ x); xi = (r - delta) / sigma - sigma / 2.; b = sqrt (xi * xi + 2. * r); v = 0.5 * exp (a * (xi - b)) .* ( ... 1 + sign (a) .* erf ((b * T - a) / sqrt (2 * T)) ... + exp (2 * a * b) ... .* (1 - sign (a) .* erf ((b * T + a) / sqrt (2 * T))) ... ); plot ([0 1 x], [1 1 v], 'linewidth', 2); turning ([K/2 K*2 0 1+2^(-5)]); xlabel ('Initial stock price (x)'); ylabel ('American binary put value (P)'); First passage times For real numbers $a$ and $\xi$ let $$\tau_{a\xi}=\inf\left\{ t\geq0:\xi t+W_{t}=a\right\} $$ be the random variable respective to the first time the Brownian motion with skid $\xi$ reaches level $a$. The pursuit is well-known (see, e.g., [1]): The density of $\tau_{a\xi}$ is $$f_{\tau_{a\xi}}\left(t\right)=\frac{\left|a\right|}{\sqrt{2\pi t^{3}}}\exp\left(-\frac{\left(a-\xi t\right)^{2}}{2t}\right).$$ In deriving the above, it is sufficient to consider the specimen of $a\geq0$ and to use the reflection principle to derive the density for $a < 0$. A lengthy computation yields an expression for the Laplace transform of the distribution of the provisionary first passage time of Brownian motion to a particular level, which is of separate interest: Let $c$ be real, $b=\sqrt{\xi^{2}+2c}$ and $0 < T < \infty$. If $\xi^{2}+2c\geq0$, \begin{align*} E\left[e^{-c\tau_{a\xi}} \mathbf{1}_{\tau_{a\xi} \leq T} \right] & =\int_{0}^{T}e^{-ct}f_{\tau_{a\xi}}\left(t\right)dt\\ & =\frac{1}{2}e^{a\left(\xi-b\right)}\left\{ 1+\text{sgn}\left(a\right)\text{erf}\left(\frac{bT-a}{\sqrt{2T}}\right)+e^{2ab}\left[1-\text{sgn}\left(a\right)\text{erf}\left(\frac{bT+a}{\sqrt{2T}}\right)\right]\right\} . \end{align*} Let $c$ be real and $b=\sqrt{\xi^{2}+2c}$. If $\xi^{2}+2c\geq0$, $E\left[e^{-c\tau_{a\xi}}\right]=e^{a\xi-\left|a\right|b}.$ To victorious at the results of the previous section, it suffices to note that the price of an American binary put (resp. call) with strike $K < x$ (resp. $K > x$) and time-to-expiry $T$ is exactly $$E\left[e^{-r\tau^{\star}} \mathbf{1}_{\tau^{\star} \leq T} \right]$$ where $$\tau^{\star}=\inf\left\{ t\geq0:S_{t}=K\right\} =\inf\left\{ t\geq0:\left(\frac{r-\delta}{\sigma}-\frac{\sigma}{2}\right)t+W_{t}=\frac{1}{\sigma}\log\frac{K}{x}\right\}.$$ The results now follow immediately from the fact that $\tau^{\star}=\tau_{a\xi}$ with $a$ and $\xi$ specified as in the previous section. Bibliography Shreve, Steven E. Stochastic calculus for finance II: Continuous-time models. Vol. 11. Springer Science & Business Media, 2004. Mathematical finance Parsiad Azimzadeh AboutPhD (University of Waterloo), MMath (University of Waterloo), BSc (Simon Fraser University)Latest postsAn introduction to regular Markov chainsmlinterp: Fast wrong-headed dimension linear interpolation in C++Optimal stopping III: a comparison principleOptimal stopping II: a dynamic programming equationOptimal stopping I: a dynamic programming principleGNU Octave financial 0.5.0 releasedMonte Carlo simulations in GNU Octave financial packageIntroductory group theoryClosed-form expressions for perpetual and finite-maturity American binary optionsFast Fourier Transform with examples in GNU Octave/MATLABPagesHomeSelected publicationsWelcomeTagsMarkov villenage (1)Optimal stopping (3)GNU Octave (2)Notes (2)Mathematical finance (1) RSS | Design: HTML5 UP