parsiad.ca - Optimal stopping I: a dynamic programming principle









Search Preview

Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh

parsiad.ca

.ca > parsiad.ca

SEO audit: Content analysis

Language Error! No language localisation is found.
Title Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh
Text / HTML ratio 75 %
Frame Excellent! The website does not use iFrame solutions.
Flash Excellent! The website does not have any flash contents.
Keywords cloud \\ =\mathbbE\left stopping \beginalign \endalign Optimal inequality time programming principle \tau \geq dynamic continuous utx function \mathbbE\left < t\primex\prime\in GNU
Keywords consistency
Keyword Content Title Description Headings
\\ 19
=\mathbbE\left 17
stopping 15
\beginalign 10
\endalign 10
Optimal 8
Headings
H1 H2 H3 H4 H5 H6
1 7 3 0 0 0
Images We found 2 images on this web page.

SEO Keywords (Single)

Keyword Occurrence Density
\\ 19 0.95 %
=\mathbbE\left 17 0.85 %
stopping 15 0.75 %
\beginalign 10 0.50 %
\endalign 10 0.50 %
Optimal 8 0.40 %
inequality 7 0.35 %
time 6 0.30 %
programming 6 0.30 %
principle 6 0.30 %
\tau 6 0.30 %
\geq 6 0.30 %
dynamic 6 0.30 %
continuous 5 0.25 %
utx 5 0.25 %
function 5 0.25 %
\mathbbE\left 5 0.25 %
< 5 0.25 %
t\primex\prime\in 4 0.20 %
GNU 4 0.20 %

SEO Keywords (Two Word)

Keyword Occurrence Density
=\mathbbE\left \\ 13 0.65 %
\\ =\mathbbE\left 12 0.60 %
such that 7 0.35 %
Optimal stopping 7 0.35 %
dynamic programming 6 0.30 %
by the 5 0.25 %
we can 5 0.25 %
programming principle 5 0.25 %
in the 4 0.20 %
stopping time 4 0.20 %
\beginalign utx 4 0.20 %
a dynamic 4 0.20 %
that the 3 0.15 %
stopping times 3 0.15 %
is continuous 3 0.15 %
Parsiad Azimzadeh 3 0.15 %
GNU Octave 3 0.15 %
the above 3 0.15 %
the tower 3 0.15 %
tower property 3 0.15 %

SEO Keywords (Three Word)

Keyword Occurrence Density Possible Spam
\\ =\mathbbE\left \\ 10 0.50 % No
=\mathbbE\left \\ =\mathbbE\left 9 0.45 % No
dynamic programming principle 5 0.25 % No
a dynamic programming 4 0.20 % No
the tower property 3 0.15 % No
on both sides 3 0.15 % No
able to use 2 0.10 % No
\tau on both 2 0.10 % No
University of Waterloo 2 0.10 % No
\tau and \epsilon 2 0.10 % No
=\mathbbE\left \\ \geq\mathbbE\left 2 0.10 % No
\beginalign utx \geq 2 0.10 % No
dominated convergence theorem 2 0.10 % No
requires more work 2 0.10 % No
inequality requires more 2 0.10 % No
\geq inequality requires 2 0.10 % No
The \geq inequality 2 0.10 % No
The \leq inequality 2 0.10 % No
upper and lower 2 0.10 % No
the dominated convergence 2 0.10 % No

SEO Keywords (Four Word)

Keyword Occurrence Density Possible Spam
=\mathbbE\left \\ =\mathbbE\left \\ 9 0.45 % No
\\ =\mathbbE\left \\ =\mathbbE\left 6 0.30 % No
a dynamic programming principle 3 0.15 % No
The \geq inequality requires 2 0.10 % No
\\ =\mathbbE\left \\ \geq\mathbbE\left 2 0.10 % No
\tau on both sides 2 0.10 % No
< \theta < T 2 0.10 % No
t < \theta < 2 0.10 % No
inequality requires more work 2 0.10 % No
at the desired result 2 0.10 % No
arrive at the desired 2 0.10 % No
to arrive at the 2 0.10 % No
sides to arrive at 2 0.10 % No
both sides to arrive 2 0.10 % No
\geq inequality requires more 2 0.10 % No
I a dynamic programming 2 0.10 % No
the dominated convergence theorem 2 0.10 % No
stopping I a dynamic 2 0.10 % No
on both sides to 2 0.10 % No
Optimal stopping I a 2 0.10 % No

Internal links in - parsiad.ca

Selected publications
Selected publications - Parsiad Azimzadeh
Blog
Parsiad Azimzadeh
read about the latest release here
GNU Octave financial 0.5.0 released - Parsiad Azimzadeh
Monte Carlo simulation framework
Monte Carlo simulations in GNU Octave financial package - Parsiad Azimzadeh
An introduction to regular Markov chains
An introduction to regular Markov chains - Parsiad Azimzadeh
mlinterp: Fast arbitrary dimension linear interpolation in C++
mlinterp: Fast arbitrary dimension linear interpolation in C++ - Parsiad Azimzadeh
Optimal stopping III: a comparison principle
Optimal stopping III: a comparison principle - Parsiad Azimzadeh
Optimal stopping II: a dynamic programming equation
Optimal stopping II: a dynamic programming equation - Parsiad Azimzadeh
Optimal stopping I: a dynamic programming principle
Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh
Introductory group theory
Introductory group theory - Parsiad Azimzadeh
Closed-form expressions for perpetual and finite-maturity American binary options
Closed-form expressions for perpetual and finite-maturity American binary options - Parsiad Azimzadeh
Fast Fourier Transform with examples in GNU Octave/MATLAB
Fast Fourier Transform with examples in GNU Octave/MATLAB - Parsiad Azimzadeh
Welcome
Welcome - Parsiad Azimzadeh
Markov chains (1)
Parsiad Azimzadeh
Optimal stopping (3)
Parsiad Azimzadeh
GNU Octave (2)
Parsiad Azimzadeh
Notes (2)
Parsiad Azimzadeh
Mathematical finance (1)
Parsiad Azimzadeh
RSS
Parsiad Azimzadeh

Parsiad.ca Spined HTML


Optimal stopping I: a dynamic programming principle - Parsiad Azimzadeh Parsiad Azimzadeh Selected publications Blog Menu Curriculum vitae Selected publications Blog Log in Optimal stopping I: a dynamic programming principle May 19, 2016 Parsiad Azimzadeh The pursuit is an expository post in which a dynamic programming principle is derived for an optimal stopping problem. The exposition is inspired by a proof in N. Touzi's textbook [1], an invaluable resource. Before we begin, let's requite some motivation. As an example, consider a risk-neutral stock given by the process $(X_t)_{t\geq 0}$. Optimal stopping describes the price of an American option paying off $g(X_t)$ at time $t$. Through this three-part series of posts, the reader is shown that the value of such an option is the unique viscosity solution of a partial differential equation (in particular, a single-obstacle variational inequality). Consider a filtered probability space (with filtration $(\mathcal{F}_{t})_{t\geq0}$) satisfying the usual conditions, on which a standard Brownian motion $W_{t}$ is defined. Let $X_{s}^{t,x}$ denote the strong solution of the stochastic differential equation (SDE) $$dX_{s}=b(s,X_{s})ds+\sigma(s,X_{s})dW_{s}\text{ for }s>t\text{ and }X_{t}=x.$$ To ensure its existence and uniqueness, we need: $b$ and $\sigma$ are Lipschitz and of linear growth in $x$ uniformly in $t$. Let $T<\infty$ and $\mathscr{T}_{[t,T]}$ be the set of $[t,T]$ stopping times self-sustaining of $\mathcal{F}_{t}$. Consider the problem $$u(t,x)=\sup_{\tau\in\mathscr{T}_{[t,T]}}J(t,x;\tau)\text{ where }J(t,x;\tau)=\mathbb{E}\left[g(\tau,X_{\tau}^{t,x})\right]$$and $g$ is a given function. To ensure this is well-defined, we take the following: $g:[0,T]\times\mathbb{R}^d$ is continuous and of quadratic growth (i.e., $|g(t,x)|\leq K(1+|x|^2)$ for some unvarying $K>0$ self-sustaining of $(t,x)$). The whilom theorizing implies that for all $s$ and $\tau\in\mathscr{T}_{[s,T]}$, the function $(t,x)\mapsto J(t,x;\tau)$ is continuous on $[0,s]\times\mathbb{R}^{d}$ by the pursuit argument. Let $(t_{n}^\prime,x_{n}^\prime)_{n}$ be a sequence converging to $(t^\prime,x^\prime)\in[0,s]\times\mathbb{R}^{d}$. If we can show that $(g(\tau,X_{\tau}^{t_{n}^\prime,x_{n}^\prime}))_n$ is dominated by an integrable function, we can wield the dominated convergence theorem to get \begin{align*} \lim_{n\rightarrow\infty}J(t_{n}^\prime,x_{n}^\prime;\tau) & =\lim_{n\rightarrow\infty}\mathbb{E}\left[g(\tau,X_{\tau}^{t_{n}^\prime,x_{n}^\prime})\right]\\ & =\mathbb{E}\left[\lim_{n\rightarrow\infty}g(\tau,X_{\tau}^{t_{n}^\prime,x_{n}^\prime})\right]\\ & =\mathbb{E}\left[g(\tau,\lim_{n\rightarrow\infty}X_{\tau}^{t_{n}^\prime,x_{n}^\prime})\right]\\ & =\mathbb{E}\left[g(\tau,X_{\tau}^{t^\prime,x^\prime})\right]\\ & =J(t^\prime,x^\prime;\tau). \end{align*} Moreover, since $g$ is of quadratic growth, \begin{align*} \mathbb{E}\left[\left|g(\tau,X_{\tau}^{t_{n}^\prime,x_{n}^\prime})\right|\right] & \leq\mathbb{E}\left[K\left(1+\left|X_{\tau}^{t_{n}^\prime,x_{n}^\prime}\right|^{2}\right)\right]\\ & =K\left(1+\mathbb{E}\left[\left|X_{\tau}^{t_{n}^\prime,x_{n}^\prime}\right|^{2}\right]\right)\\ & \leq K_{0}\left(1+\left|x_{n}^\prime\right|^{2}\right) \end{align*} where $K_{0}$ can depend on $T$ (by the usual treatise for Ito processes using Gronwall's lemma). Since $x_{n}^\prime\rightarrow x^\prime$, domination follows. We denote by $f^{*}$ and $f_{*}$ the upper and lower semicontinuous envelopes of a function $f\colon Y\rightarrow[-\infty,\infty]$, where $Y$ is a given topological space. Let $\theta\in\mathscr{T}_{[t,T]}$ be a stopping time such that $t < \theta < T$ and $X_{\theta}^{t,x}\in\mathbb{L}^{\infty}$. The pursuit dynamic programming principle holds: \begin{align*} u(t,x) & \leq\sup_{\tau\in\mathscr{T}_{[t,T]}}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u^{*}(\theta,X_{\theta}^{t,x})\right].\\ u(t,x) & \geq\sup_{\tau\in\mathscr{T}_{[t,T]}}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u_{*}(\theta,X_{\theta}^{t,x})\right]. \end{align*} Note that if $u$ is continuous, the whilom dynamic programming principle becomes, by virtue of $u=u_{*}=u^{*}$, $$u(t,x)=\sup_{\tau\in\mathscr{T}_{[t,T]}}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u(\theta,X_{\theta}^{t,x})\right].$$ Intuition overdue proof: The $\leq$ inequality is established by the tower property (see the formal proof below). The $\geq$ inequality requires increasingly work. Intuitively, we can take an $\epsilon$-optimal tenancy $\tau^{\epsilon}(\theta)$ as follows: $$u(\theta,X_{\theta}^{t,x})\leq J(\theta,X_{\theta}^{t,x};\tau^{\epsilon}(\theta))+\epsilon.$$ Now, let $\tau$ be an wrong-headed stopping time and $$\hat{\tau}=\tau\mathbf{1}_{\left\{ \tau<\theta\right\} }+\tau^{\epsilon}(\theta)\mathbf{1}_{\left\{ \tau\geq\theta\right\} }.$$ Then, \begin{align*} u(t,x) & \geq J(t,x;\hat{\tau})\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau^{\epsilon}(\theta),X_{\tau^{\epsilon}(\theta)}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau^{\epsilon}(\theta),X_{\tau^{\epsilon}(\theta)}^{t,x})\mid\mathcal{F}_{\theta}\right]\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }J(\theta,X_{\theta}^{t,x};\tau^{\epsilon}(\theta))\right]\\ & \geq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u(\theta,X_{\theta}^{t,x})\right]-\epsilon. \end{align*} The desired result follows since $\tau$ and $\epsilon$ are wrong-headed (take a sup over $\tau$ on both sides of the inequality). However, $\hat{\tau}$ is not a $\mathscr{T}_{[t,T]}$ stopping time, so the first inequality fails. In the proof below, this unveiled issue is dealt with rigorously. We moreover mention another, perhaps less grave, issue: in the event that $u$ is not continuous, we cannot say anything well-nigh its measurability so that the expectation involving $u$ at a future time is ill-defined (this is the reason we use upper and lower semicontinuous envelopes in the above). The $\leq$ inequality follows directly from the tower property: \begin{align*} J(t,x;\tau) & =\mathbb{E}\left[g(\tau,X_{\tau}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau,X_{\tau}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau,X_{\tau}^{t,x})\mid\mathcal{F}_{\theta}\right]\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }J(\theta,X_{\theta}^{t,x};\tau)\right]\\ & \leq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u^{*}(\theta,X_{\theta}^{t,x})\right]. \end{align*} Now, take the supremum over all stopping times $\tau$ on both sides to victorious at the desired result. The $\geq$ inequality requires increasingly work. For brevity, let $\mathcal{O}=(t,T)\times\mathbb{R}^{d}$ for the remainder. Let $\epsilon>0$ and $\varphi\colon[0,T]\times\mathbb{R}^d\rightarrow\mathbb{R}$ be an upper semicontinuous function satisfying $u\geq\varphi$. For each $(s,y)\in \mathcal{O}$, there exists $\tau^{s,y}\in\mathscr{T}_{[s,T]}$ such that $$ u(s,y)\leq J(s,y;\tau^{s,y})+\epsilon. $$ Using the upper semicontinuity of $\varphi$ and the continuity of $J$ (see above), we can find a family $(r^{s,y})$ of positive constants such that $$ \epsilon\geq\varphi(t^{\prime},x^{\prime})-\varphi(s,y)\text{ and }J(s,y;\tau^{s,y})-J(t^{\prime},x^{\prime};\tau^{s,y})\leq\epsilon \text{ for }(t^{\prime},x^{\prime})\in B(s,y;r^{s,y}) $$ where $$B(s,y;r)=(s-r,s)\times\left\{ x\in\mathbb{R}^d\colon\left|x-y\right| < r\right\}.$$ This seemingly strange nomination for the sets whilom is justified later. Since $$ \left\{ B(s,y;r^{s,y})\colon(s,y)\in \mathcal{O}\right\} $$ forms a imbricate of $\mathcal{O}$ by unshut sets, Lindelöf's lemma yields a countable subcover $\{B(t_{i},x_{i};r_{i})\}$. Let $C_{0}=\emptyset$, and $$ A_{i+1}=B(t_{i+1},x_{i+1};r_{i+1})\setminus C_{i}\text{ where }C_{i+1}=A_{1}\cup\cdots\cup A_{i+1}\text{ for }i\geq0. $$ Note that the countable family $\{A_{i}\}$ is disjoint by construction, and that $X_{\theta}^{t,x}\in\cup_{i\geq1}A_{i}$ a.s. (recall that $X_{\theta}^{t,x}\in\mathbb{L}^{\infty}$ and $t < \theta < T$ by definition). Moreover, letting $\tau^{i}=\tau^{t_{i},x_{i}}$ for brevity, \begin{align*} J(t^{\prime},x^{\prime};\tau^{i}) & \geq J(t_{i},x_{i};\tau^{i})-\epsilon\\ & \geq u(t_{i},x_{i})-2\epsilon\\ & \geq\varphi(t_{i},x_{i})-2\epsilon\\ & \geq\varphi(t^{\prime},x^{\prime})-3\epsilon & \text{for }(t^{\prime},x^{\prime})\in B(t_{i},x_{i};r_{i})\supset A_{i}. \end{align*} Now, let $A^{n}=\cup_{i\leq n}A_{i}$ for $n\geq1$. Given a stopping time $\tau\in\mathscr{T}_{[t,T]}$, let $$ \hat{\tau}^{n}=\tau\mathbf{1}_{\left\{ \tau<\theta\right\} }+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\left(T\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})+\sum_{i=1}^{n}\tau^{i}\mathbf{1}_{A_{i}}(\theta,X_{\theta}^{t,x})\right). $$ In particular, since $B(t_{i},x_{i};r_{i})\supset A_{i}$ was picked such that for all $(t^{\prime},x^{\prime})\in B(t_{i},x_{i};r_{i})$, $t^{\prime}\leq t_{i}$, we have that $\hat{\tau}^n\in\mathscr{T}_{[t,T]}$. If we had instead chosen the unshut sets $B_{r_{i}}(t_{i},x_{i})$ to form our cover, we would not be worldly-wise to use $\tau^{i}$ in the whilom definition of $\hat{\tau}^{n}$ without violating--roughly speaking--the condition that "stopping times cannot peek into the future." We first write \begin{align*} u(t,x) & \geq J(t,x;\hat{\tau}^{n})\\ & =\mathbb{E}\left[\left(\mathbf{1}_{\left\{ \tau<\theta\right\} }+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right)g(\hat{\tau}^{n},X_{\hat{\tau}^{n}}^{t,x})\right] \end{align*} and consider the terms in the summation separately. It follows from our nomination of $A^{n}$ and the tower property that \begin{align*} \mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\hat{\tau}^{n},X_{\hat{\tau}^{n}}^{t,x})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right] & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau^{i},X_{\tau^{i}}^{t,x})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\tau^{i},X_{\tau^{i}}^{t,x})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\mid\mathcal{F}_{\theta}\right]\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }J(\theta,X_{\theta}^{t,x};\tau^{i})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right]\\ & \geq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\left(\varphi(\theta,X_{\theta}^{t,x})-3\epsilon\right)\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right]\\ & \geq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi(\theta,X_{\theta}^{t,x})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right]-3\epsilon. \end{align*} Moreover, $$ \mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(\hat{\tau}^{n},X_{\hat{\tau}^{n}}^{t,x})\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})=\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(T,X_{T}^{t,x})\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})\leq|g(T,X_{T}^{t,x})| $$ and hence the dominated convergence theorem yields $$ \lim_{n\rightarrow\infty}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(T,X_{T}^{t,x})\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})\right] =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }g(T,X_{T}^{t,x})\lim_{n\rightarrow\infty}\mathbf{1}_{\mathcal{O}\setminus A^{n}}(\theta,X_{\theta}^{t,x})\right]=0 $$ since we can (a.s.) find $i$ such that $(\theta,X_{\theta}^{t,x})\in A_{i}$. By Fatou's lemma, \begin{align*} \liminf_{n\rightarrow\infty}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi(\theta,X_{\theta}^{t,x})\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right] & \geq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi(\theta,X_{\theta}^{t,x})\liminf_{n\rightarrow\infty}\mathbf{1}_{A^{n}}(\theta,X_{\theta}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi(\theta,X_{\theta}^{t,x})\right]. \end{align*} Note that we were worldly-wise to use Fatou's lemma since $\varphi(\theta,X_\theta^{t,x})$ is regional due to the theorizing $X_{\theta}^{t,x}\in\mathbb{L}^{\infty}$. Since $\tau$ and $\epsilon$ were arbitrary, we have that $$ u(t,x)\geq\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi(\theta,X_{\theta}^{t,x})\right] \text{ for } \tau\in\mathscr{T}_{[t,T]}.$$ For the last step, let $r>0$ such that $|X_{\theta}^{t,x}|\leq r$ a.s. (recall $X_{\theta}^{t,x}\in\mathbb{L}^{\infty}$). We can find a sequence of continuous functions $(\varphi_{n})$ such that $\varphi_{n}\leq u_{*}$ and converges pointwise to $u_{*}$ on $[0,T]\times B_{r}(0)$. Letting $\varphi^N = \min_{n\geq N} \varphi_n$ denote a nondecreasing modification of this sequence, by the monotone convergence theorem, we get \begin{align*} u(t,x) & \geq\lim_{N\rightarrow\infty}\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }\varphi^N(\theta,X_{\theta}^{t,x})\right]\\ & =\mathbb{E}\left[\mathbf{1}_{\left\{ \tau<\theta\right\} }g(\tau,X_{\tau}^{t,x})+\mathbf{1}_{\left\{ \tau\geq\theta\right\} }u_{*}(\theta,X_{\theta}^{t,x})\right] & \text{ for } \tau \in \mathscr{T}_{[t,T]}.\end{align*} Now, simply take supremums on both sides to victorious at the desired result. Bibliography Touzi, Nizar. Optimal stochastic control, stochastic target problems, and wrong-side-up SDE. Vol. 29. Springer Science & Business Media, 2012. Optimal stopping Parsiad Azimzadeh AboutPhD (University of Waterloo), MMath (University of Waterloo), BSc (Simon Fraser University)Latest postsAn introduction to regular Markov chainsmlinterp: Fast wrong-headed dimension linear interpolation in C++Optimal stopping III: a comparison principleOptimal stopping II: a dynamic programming equationOptimal stopping I: a dynamic programming principleGNU Octave financial 0.5.0 releasedMonte Carlo simulations in GNU Octave financial packageIntroductory group theoryClosed-form expressions for perpetual and finite-maturity American binary optionsFast Fourier Transform with examples in GNU Octave/MATLABPagesHomeSelected publicationsWelcomeTagsMarkov villenage (1)Optimal stopping (3)GNU Octave (2)Notes (2)Mathematical finance (1) RSS | Design: HTML5 UP Please enable JavaScript to view the comments powered by Disqus.